The CRISPR-Cas12 SHERLOCK System Can Identify HIV

Author :  

Year-Number: 2022-3
Yayımlanma Tarihi: 2022-12-21 13:15:24.0
Language : İngilizce
Konu : Moleküler Biyoloji ve Genetik
Number of pages: 14-18
Mendeley EndNote Alıntı Yap




The HIV (Human Immunodeficiency Virus) virus can settle in a variety of human tissues and is spread by blood and unprotected sexual contact, but it mostly affects the immune system. Today's anti-HIV medications stop the virus's growth in the body and its immunosuppressive effects, enabling HIV-positive persons to live a longer, healthier life. Early treatment initiation and consistent treatment maintenance under a doctor's supervision are crucial for this. In the treatment and progression of HIV infection, early diagnosis and, consequently, early treatment are important. In addition to increasing life expectancy, early diagnosis also lowers transmission rates. Today, RT-PCR and antibody-based diagnostic kits are used for HIV diagnosis. But both diagnostic models have some flaws and glitches. To eliminate this situation, CRISPR-based diagnostic kits are very suitable for use in the diagnosis of both viral and bacterial diseases.


  • Borte, M., & Berger, M. (2015). Current treatment options withimmunoglobulin G for the individualization of care in patientswith primary immunodeficiency disease. Clinical andexperimental immunology, 179(2), 146–160.

  • Belhaj, K., Chaparro-Garcia, A., Kamoun, S., Patron, N. J., &Nekrasov, V. (2015). Editing plant genomes with CRISPR/Cas9.Current opinion in biotechnology, 32, 76–84.

  • Tang, X., Zheng, X., Qi, Y., Zhang, D., Cheng, Y., Tang, A.,Voytas, D. F., & Zhang, Y. (2016). A Single Transcript CRISPR-Cas9 System for Efficient Genome Editing in Plants. Molecularplant, 9(7), 1088–1091.

  • Voytas D. F. (2013). Plant genome engineering with sequence-specific nucleases. Annual review of plant biology, 64, 327–350.

  • Harnessing CRISPR Effectors for Infectious Disease DiagnosticsRoby P. Bhattacharyya, Sri Gowtham Thakku, Deborah T. (2018) Hung10.1021/acsinfecdis.8b00170ACS Infectious Diseases

  • All-in-One Dual CRISPR-Cas12a (AIOD-CRISPR) Assay: ACase for Rapid, Ultrasensitive and Visual Detection of NovelCoronavirus SARS-CoV-2 and HIV virus 2020Xiong Ding, KunYin, Ziyue Li, Changchun Liu10.1101/2020.03.19.998724CRISPR-Based Diagnosis of Infectious and Noninfectious Diseases

  • Somayeh Jolany vangah, Camellia Katalani, Hannah A. Boone,Abbas Hajizade, Adna Sijercic, Gholamreza Ahmadian (2020).10.1186/s12575-020-00135-3Biological Procedures Online SHERLOCK: nucleic acid detection with CRISPR nucleases

  • Max J. Kellner, Jeremy G. Koob, Jonathan S. Gootenberg, OmarO. Abudayyeh, Feng Zhang. (2019). 10.1038/s41596-019-0210- 2Nature Protocol. 52

  • Norimitsu Hosaka, Nicaise Ndembi, Azumi Ishizaki, SeijiKageyama, Kei Numazaki, Hiroshi Ichimura (2009). Rapiddetection of human immunodeficiency virus type 1 group M by areverse transcription-loop-mediated isothermal amplificationassay. 10.1016/j.jviromet.2009.01.004Journal of Virological Methods

  • Shen, H., Strunks, G.D., Klemann, B.J., Hooykaas, P.J., & dePater, S. (2016). CRISPR/Cas9-Induced Double-Strand BreakRepair in Arabidopsis Nonhomologous End-Joining Mutants. G3: Genes|Genomes|Genetics, 7, 193 - 202.

  • Takata, M., Sasaki, M. S., Sonoda, E., Morrison, C., Hashimoto,M., Utsumi, H., Yamaguchi-Iwai, Y., Shinohara, A., & Takeda, S.(1998). Homologous recombination and non-homologous end-joining pathways of DNA double-strand break repair haveoverlapping roles in the maintenance of chromosomal integrityin vertebrate cells. The EMBO journal, 17(18), 5497–5508.

  • S. (2006). Differential usage of non-homologous end-joining andhomologous recombination in double strand break repair. DNArepair, 5(9-10), 1021–1029.

  • ̈chel, J., Serrano, L., Segal, D. J., &Cathomen, T. (2007). Structure-based redesign of thedimerization interface reduces the toxicity of zinc-fingernucleases. Nature biotechnology, 25(7), 786–793.

  • ̈ NH, Sugasawa K, Iwai S, Kurumizaka H. Structural basisof pyrimidine-pyrimidone (6-4) photoproduct recognition byUV-DDB in the nucleosome. Sci Rep. 2015 Nov 17;5:16330. doi:10.1038/srep16330. PMID: 26573481; PMCID: PMC4648065.

  • Urnov, F. D., Rebar, E. J., Holmes, M. C., Zhang, H. S., &Gregory, P. D. (2010). Genome editing with engineered zincfinger nucleases. Nature reviews. Genetics, 11(9), 636–646.

  • Petolino J. F. (2015). Genome editing in plants via designed zincfinger nucleases. In vitro cellular & developmental biology. Plant: journal of the Tissue Culture Association, 51(1), 1–8.

  • Budhagatapalli, N., Rutten, T., Gurushidze, M., Kumlehn, J., &Hensel, G. (2015). Targeted Modification of Gene FunctionExploiting Homology-Directed Repair of TALEN-MediatedDouble-Strand Breaks in Barley. G3 (Bethesda, Md.), 5(9), 1857– 1863.

  • Moscou, M. J., & Bogdanove, A. J. (2009). A simple ciphergoverns DNA recognition by TAL effectors. Science (New York,N.Y.), 326(5959), 1501. JP, Pattanayak V, Reyon D, Tsai SQ, Sander JD, JoungJK, Liu DR. Broad specificity profiling of TALENs results inengineered nucleases with improved DNA- cleavage specificity.Nat Methods. 2014 Apr;11(4):429-35. doi: 10.1038/nmeth.2845.Epub 2014 Feb 16. PMID: 24531420; PMCID: PMC4010127.

  • Reyon, D., Tsai, S. Q., Khayter, C., Foden, J. A., Sander, J. D., &Joung, J. K. (2012). FLASH assembly of TALENs for high-throughput genome editing. Nature biotechnology, 30(5), 460– 465.

  • Bortesi, L., & Fischer, R. (2015). The CRISPR/Cas9 system forplant genome editing and beyond. Biotechnology advances,33(1), 41–52.

  • Magdy M. Mahfouz, Agnieszka Piatek, Charles Neal Stewart(2014). Genome engineering via TALENs and CRISPR/Cas9systems: challenges and perspectives 10.1111/pbi.12256Plant Biotechnology Journal

  • Article Statistics