CRISPR-Cas9 based gene editing technologies in induced pluripotent stem cells

Author :  

Year-Number: 2020-1
Language : English
Konu : Medical Biology and Genetics
Number of pages: 36-41
Mendeley EndNote Alıntı Yap

Abstract

Recent advances in the field of induced Pluripotent Stem Cells (iPSC) have a crucial role in therapeutic research iPSCs are cells reprogrammed from somatic cells using different transcription factors. The unique features of iPSCs such as self-renewal and differentiation into various cell lines makes it a more advantageous candidate in stem cell technologies. By replacing the use of embryonic stem cells (ESCs), iPSCs usage overcome various ethical issues related to the use of embryos in research and clinics. Besides iPSC technology is a promising field for disease modelling and gene therapy as human-derived pluripotent stem cells are the ideal source of cells for autologous cell replacement. Furthermore for patients with single gene disease, it is vital to genetically correct the disease-causing mutation before cellular differentiation and transplantation. Hence, the emergence of the CRISPR-Cas9 system has a very revolutionary and significant role in the genome editing field. Compared to other gene editing technologies, it is relatively easy to implement and at a lower cost, it is possible to repair and modify the genetic composition. Therefore CRISPR-Cas9 is a promising tool by leading repair of patient-specific iPSCs and serving possible future autologous cellular treatments. In this review, the current approaches and gene editing technologies in iPSCs will be summarized.

Keywords

Abstract

Recent advances in the field of induced Pluripotent Stem Cells (iPSC) have a crucial role in therapeutic research iPSCs are cells reprogrammed from somatic cells using different transcription factors. The unique features of iPSCs such as self-renewal and differentiation into various cell lines makes it a more advantageous candidate in stem cell technologies. By replacing the use of embryonic stem cells (ESCs), iPSCs usage overcome various ethical issues related to the use of embryos in research and clinics. Besides iPSC technology is a promising field for disease modelling and gene therapy as human-derived pluripotent stem cells are the ideal source of cells for autologous cell replacement. Furthermore for patients with single gene disease, it is vital to genetically correct the disease-causing mutation before cellular differentiation and transplantation. Hence, the emergence of the CRISPR-Cas9 system has a very revolutionary and significant role in the genome editing field. Compared to other gene editing technologies, it is relatively easy to implement and at a lower cost, it is possible to repair and modify the genetic composition. Therefore CRISPR-Cas9 is a promising tool by leading repair of patient-specific iPSCs and serving possible future autologous cellular treatments. In this review, the current approaches and gene editing technologies in iPSCs will be summarized.

Keywords


  • Angelos MG & Kaufman DS (2015). Pluripotent stem cell

  • Angelos MG & Kaufman DS (2015). Pluripotent stem cellapplications for regenerative medicine. Current opinion in organtransplantation 20(6): 663. doi: 10,1097 / MOT.0000000000000244.

  • Birket MJ, Raibaud S, Lettieri M, Adamson AD, Letang V et al.(2019). A Human Stem Cell Model of Fabry Disease ImplicatesLIMP-2 Accumulation in Cardiomyocyte Pathology. Stem cell reports 13(2): 380-393. doi: 10.1016 / j.stemcr.2019.07.004.

  • Bohrer LR, Wiley LA, Burnight ER, Cooke JA, Giacalone JC, etal. (2019). Correction of NR2E3 Associated Enhanced S-coneSyndrome Patient-specific iPSCs using CRISPR-Cas9. Genes 10(4): 278. doi: 10,3390 / genes10040278.

  • Bolotin A, Quinquis B, Sorokin A, & Ehrlich SD (2005).Clustered regularly interspaced short palindrome repeats(CRISPRs) have spacers of extrachromosomal origin.Microbiology 151(8): 2551-2561. doi: 10.1099/mic.0.28048-0.

  • Cai B, Sun S, Li Z, Zhang X, Ke Y, et al. (2018). Application ofCRISPR/Cas9 technologies combined with iPSCs in the studyand treatment of retinal degenerative diseases. Human genetics 137(9): 679-688. doi: 10.1007 / s00439-018-1933-9.

  • Cox DBT, Platt RJ, & Zhang F (2015). Therapeutic genomeediting: prospects and challenges. Nature medicine 21(2): 121. doi: 10.1038 / nm.3793.

  • Dai WJ, Zhu LY, Yan ZY, Xu Y, Wang QL, & Lu XJ (2016).

  • CRISPR-Cas9 for in vivo gene therapy: promise and hurdles.Molecular Therapy-Nucleic Acids 5: e349. doi: 10.1038/mtna.2016.58.

  • DeWitt MA, Magis W, Bray NL, Wang T, Berman JR, et al.(2016). Selection-free genome editing of the sickle mutation inhuman adult hematopoietic stem/progenitor cells. Sciencetranslational medicine 8(360): 360ra134-360ra134. doi: 10.1126/scitranslmed.aaf9336.

  • Estève J, Blouin JM, Lalanne M, Azzi-Martin L, Dubus P, et al.(2019). Targeted gene therapy in human-induced pluripotentstem cells from a patient with primary hyperoxaluria type 1 usingCRISPR/Cas9 technology. Biochemical and biophysical researchcommunications 517(4): 677-683. doi: 10.1016 / j.bbrc.2019.07.109.

  • Flynn R, Grundmann A, Renz P, Hänseler W, James, WS, et al.(2015). CRISPR-mediated genotypic and phenotypic correctionof a chronic granulomatous disease mutation in human iPS cells.Experimental hematology 43(10): 838-848. doi: 10.1016 / j.exphem.2015.06.002.

  • Georgomanoli M, & Papapetrou EP (2019). Modeling blooddiseases with human induced pluripotent stem cells. Diseasemodels & mechanisms 12(6): dmm039321. doi: 10.1242/dmm.039321.

  • Hendel A, Bak RO, Clark JT, Kennedy AB, Ryan DE, et al.(2015). Chemically modified guide RNAs enhance CRISPR-Casgenome editing in human primary cells. Nature biotechnology 33(9): nbt-3290. doi: 10.1038/nbt.3290.

  • Huang X, Wang Y, Yan W, Smith C, Ye Z, et al. (2015).Production of Gene‐Corrected Adult Beta Globin Protein inHuman Erythrocytes Differentiated from Patient i PSC s AfterGenome Editing of the Sickle Point Mutation. Stem cells 33(5): 1470-1479. doi: 10.1002/stem.1969.

  • Hockemeyer D, & Jaenisch R (2016). Induced pluripotent stemcells meet genome editing. Cell stem cell 18(5): 573-586. doi: 10.1016/j.stem.2016.04.013.

  • Horii T, Tamura D, Morita S, Kimura M, & Hatada I (2013).Generation of an ICF syndrome model by efficient genomeediting of human induced pluripotent stem cells using theCRISPR system. International journal of molecular sciences 14(10): 19774-19781. doi: 10,3390 / ijms141019774.

  • Ishino Y, Shinagawa H, Makino K, Amemura M, & Nakata A(1987). Nucleotide sequence of the iap gene, responsible foralkaline phosphatase isozyme conversion in Escherichia coli, andidentification of the gene product. Journal of bacteriology 169(12): 5429-5433. doi: 10.1128/jb.169.12.5429-5433.1987.

  • Jacków J, Guo Z, Hansen C, Abaci HE, Doucet YS, et al. (2019).CRISPR/Cas9-based targeted genome editing for correction ofrecessive dystrophic epidermolysis bullosa using iPS cells.Proceedings of the National Academy of Sciences 116(52): 26846-26852. doi: 10.1073 / pnas.1907081116.

  • Jansen R, Embden JDV, Gaastra W, & Schouls LM (2002).Identification of genes that are associated with DNA repeats inprokaryotes. Molecular microbiology 43(6): 1565-1575. doi: 10.1046/j.1365-2958.2002.02839.x.

  • Jehuda RB, Shemer Y, & Binah O (2018). Genome editing ininduced pluripotent stem cells using CRISPR/Cas9. Stem CellReviews and Reports 14(3): 323-336. doi: 10.1007 / s12015-018- 9811-3.

  • Kiskinis E & Eggan K (2010). Progress toward the clinicalapplication of patient-specific pluripotent stem cells. The Journalof clinical investigation 120(1): 51-59. doi: 10.1172/JCI40553 doi: 10,1172 / JCI40553.

  • Li XL, Li GH, Fu J, Fu YW, Zhang L, et al. (2018). Highlyefficient genome editing via CRISPR–Cas9 in human pluripotentstem cells is achieved by transient BCL-XL overexpression.Nucleic acids research 46(19): 10195-10215. doi: 10,1093 / nar / gky804.

  • Lino CA, Harper JC, Carney JP, & Timlin JA (2018). DeliveringCRISPR: a review of the challenges and approaches. Drugdelivery 25(1): 1234-1257. doi: 10.1080/10717544.2018.1474964.

  • Long C, Amoasii L, Mireault AA, McAnally JR, Li H, et al.(2016). Postnatal genome editing partially restores dystrophinexpression in a mouse model of muscular dystrophy. Science 351(6271): 400-403. doi: 10.1126/science.aad5725.

  • Ma Y, Zhang L, & Huang X (2014). Genome modification byCRISPR/Cas9. The FEBS journal 281(23): 5186-5193. doı:10.1111/febs.13110 .Merkert S & Martin U (2016). Site-specificgenome engineering in human pluripotent stem cells.International journal of molecular sciences 17(7): 1000. doi: 10.3390/ijms17071000.

  • Mojica FJ, Díez‐Villaseñor C, Soria E, & Juez G (2000). Biologicalsignificance of a family of regularly spaced repeats in thegenomes of Archaea, Bacteria and mitochondria. Molecularmicrobiology 36(1): 244-246. doi: 10,1046 / j.1365- 2958.2000.01838.x.

  • Morishige S, Mizuno S, Ozawa H, Nakamura T, Mazahery A, etal. (2019). CRISPR/Cas9-mediated gene correction in hemophiliaB patient-derived iPSCs. International journal of hematology :1- 9. doi: 10.1007 / s12185-019-02765-0.

  • Nelson CE, Hakim CH, Ousterout DG, Thakore PI, Moreb EA,et al. (2016). In vivo genome editing improves muscle function ina mouse model of Duchenne muscular dystrophy. Science 351(6271): 403-407. doi: 10.1126/science.aad5143.

  • Omole AE & Fakoya AOJ (2018). Ten years of progress andpromise of induced pluripotent stem cells: historical origins,characteristics, mechanisms, limitations, and potential applications. PeerJ 6: e4370. doi: 10,7717 / peerj.4370.

  • Osborn MJ, Lonetree CL, Webber BR, Patel D, Dunmire S, et al.(2016). CRISPR/Cas9 targeted gene editing and cellularengineering in Fanconi anemia. Stem cells and development 25(20): 1591-1603. doi: 10.1089/scd.2016.0149.

  • Park CY, Sung JJ, Cho SR, Kim J, & Kim DW (2019). UniversalCorrection of Blood Coagulation Factor VIII in Patient-DerivedInduced Pluripotent Stem Cells Using CRISPR/Cas9. Stem cellreports 12(6): 1242-1249. doi: 10.1016 / j.stemcr.2019.04.016.

  • Pourcel C, Salvignol G, & Vergnaud G (2005). CRISPR elementsin Yersinia pestis acquire new repeats by preferential uptake ofbacteriophage DNA, and provide additional tools forevolutionary studies. Microbiology 151(3): 653-663. doi: 10.1099/mic.0.27437-0.

  • Redman M, King A, Watson C, & King D (2016). What isCRISPR/Cas9?. Archives of Disease in Childhood-Education andPractice 101(4): 213-215. doi: 10,1136 / archdischild-2.016- 310.459.

  • Ruiz S, Panopoulos AD, Herrerías A, Bissig KD, Lutz M, et al.(2011). A high proliferation rate is required for cellreprogramming and maintenance of human embryonic stem cell

  • identity. Current Biology 21(1): 45-52. doi: 10.1016 / j.cub.2010.11.049.

  • Saha K, & Jaenisch R (2009). Technical challenges in usinghuman induced pluripotent stem cells to model disease. Cell stem cell 5(6): 584-595. doi: 10.1016/j.stem.2009.11.009.

  • Schwank G, Koo BK, Sasselli V, Dekkers JF, Heo I, et al., (2013).Functional repair of CFTR by CRISPR/Cas9 in intestinal stemcell organoids of cystic fibrosis patients. Cell stem cell 13(6): 653- 658. doi: 10.1016 / j. gövde .2013.11.002.

  • Shao L, & Wu WS (2010). Gene-delivery systems for iPS cellgeneration. Expert opinion on biological therapy 10(2): 231-242. doi: 10.1517/14712590903455989.

  • Shi Y, Inoue H, Wu JC, & Yamanaka S (2017). Inducedpluripotent stem cell technology: a decade of progress. Naturereviews Drug discovery 16(2): 115. doi: 10.1038 / nrd.2016.245.

  • Song B, Fan Y, He W, et al. Improved hematopoieticdifferentiation efficiency of gene‐corrected beta‐thalassaemiainduced pluripotent stem cells by CRISPR/Cas9 system. Stem Cells Dev 2015;24:1053‐1065. doi: 10.1089/scd.2014.0347.

  • Tabebordbar M, Zhu K, Cheng J K, Chew WL, Widrick JJ, et al.(2016). In vivo gene editing in dystrophic mouse muscle andmuscle stem cells. Science 351(6271): 407-411. doi:10.1126/science.aad5177. Takahashi K & Yamanaka S (2006).Induction of pluripotent stem cells from mouse embryonic andadult fibroblast cultures by defined factors. Cell 126(4): 663-676.doi: 10.1016 / j.cell.2006.07.024.Wang L, Yi F, Fu L, Yang J,Wang S, et al. (2017). CRISPR/Cas9-mediated targeted genecorrection in amyotrophic lateral sclerosis patient iPSCs. Protein & Cell 8(5): 365-378. doi: 10.1007 / s13238-017-0397-3.

  • Wattanapanitch M, Damkham N, Potirat P, Trakarnsanga K,Janan M, et al. (2018). One-step genetic correction ofhemoglobin E/beta-thalassemia patient-derived iPSCs by theCRISPR/Cas9 system. Stem cell research & therapy 9(1): 46. doi: 10.1186/s13287-018-0779-3.

  • Xie F, Ye L, Chang JC, Beyer AI, Wang J, et al. (2014). Seamlessgene correction of β-thalassemia mutations in patient-specificiPSCs using CRISPR/Cas9 and piggyBac. Genome Research 24(9): 1526-1533. doi: 10,1101 / gr.173427.114.

  • Xiong Z, Xie Y, Yang Y, Xue Y, Wang D, et al. (2019). Efficientgene correction of an aberrant splice site in β‐thalassaemia iPSCsby CRISPR/Cas9 and single‐strand oligodeoxynucleotides.Journal of cellular and molecular medicine. doi: 10.1111 / jcmm.14669.

  • Xu P, Tong Y, Liu XZ, et al. Both TALENs and CRISPR/Cas9directly target the HBB IVS2‐654 (C>T) mutation in beta‐thalassaemia‐derived iPSCs. Sci Rep 2015;5:12065. doi: 10.1038/srep12065.

  • Yingjun X, Yuhuan X, Yuchang C, Dongzhi L, Ding W, et al.(2019). CRISPR/Cas9 gene correction of HbH-CS thalassemia-induced pluripotent stem cells. Annals of hematology 98(12): 2661-2671. doi: 10.1007 / s00277-019-03763-2.

  • Young W, D’Souza SL, Lemischka IR, & Schaniel C (2012).Patient-specific Induced Pluripotent Stem Cells as a Platform forDisease Modeling. Drug Discovery and Precision PersonalizedMedicine. J Stem Cell Res Ther S 10 2. doi: 10.4172/2157- 7633.S10-010.

                                                                                                                                                                                                        
  • Article Statistics