Gene editing studies for the treatment of anemia

Author :  

Year-Number: 2020-1
Yayımlanma Tarihi: 2020-01-12 23:50:40.0
Language : English
Konu : Gene Editing in Hematopoietic Disorders
Number of pages: 21-29
Mendeley EndNote Alıntı Yap

Abstract

With the uprising advancements in the genome editing technologies, it is now possible to modify and edit targeted DNA sequences with programmmable endonucleases. The genome editing technologies have become more widely used by researchers after the discovery of zinc finger nucleases (ZFNs) and the transcription activator-like effector nucleases (TALENs) followed by the development of another revolutionary gene editing tool CRISPR-Cas9 system. Improvements in these promising gene editing tools not only reform researchers’ understanding of the human genome but also serve as potential therapeutic approach for inherited blood disorders. The patients who have been suffering from inherited blood disorders are in need of novel therapies as available treatments are limited. Here, in this review, promising new gene editing technologies for the treatment of hemoglobinopathies including β-thalassemia and sickle cell disease are discussed.

Keywords

Abstract

With the uprising advancements in the genome editing technologies, it is now possible to modify and edit targeted DNA sequences with programmmable endonucleases. The genome editing technologies have become more widely used by researchers after the discovery of zinc finger nucleases (ZFNs) and the transcription activator-like effector nucleases (TALENs) followed by the development of another revolutionary gene editing tool CRISPR-Cas9 system. Improvements in these promising gene editing tools not only reform researchers’ understanding of the human genome but also serve as potential therapeutic approach for inherited blood disorders. The patients who have been suffering from inherited blood disorders are in need of novel therapies as available treatments are limited. Here, in this review, promising new gene editing technologies for the treatment of hemoglobinopathies including β-thalassemia and sickle cell disease are discussed.

Keywords


  • Abil Z, Xiong X, Zhao H (2014). Synthetic biology for

  • Abil Z, Xiong X, Zhao H (2014). Synthetic biology fortherapeutic applications. Molecular pharmaceutics 12:322-331

  • Aliyu ZY, Tumblin AR, Kato GJ (2006). Current therapy of sickle cell disease. Haematologica 91:7

  • Amendola M, Venneri MA, Biffi A, Vigna E, Naldini L (2005).Coordinate dual-gene transgenesis by lentiviral vectors carryingsynthetic bidirectional promoters. Nature biotechnology 23:108

  • Anders C, Niewoehner O, Duerst A, Jinek M (2014). Structuralbasis of PAM-dependent target DNA recognition by the Cas9 endonuclease. Nature 513:569-573

  • Angelucci E, Matthes-Martin S, Baronciani D, Bernaudin F,Bonanomi S, Cappellini MD, Dalle J-H, Di Bartolomeo P, deHeredia CD, Dickerhoff R (2014). Hematopoietic stem celltransplantation in thalassemia major and sickle cell disease:indications and management recommendations from an international expert panel. haematologica 99:811-820

  • Ashley-Koch A, Yang Q, Olney RS (2000). Sickle hemoglobin(Hb S) allele and sickle cell disease: a HuGE review. American journal of epidemiology 151:839-845

  • Azar S, Wong TE (2017). Sickle Cell Disease. Medical Clinics 101:375-393

  • Bersenev A, Levine BL (2012). Convergence of gene and cell therapy. Regenerative medicine 7:50-56

  • Bhakta MS, Henry IM, Ousterout DG, Das KT, Lockwood SH,Meckler JF, Wallen MC, Zykovich A, Yu Y, Leo H, Xu L,Gersbach CA, Segal DJ (2013). Highly active zinc-fingernucleases by extended modular assembly. Genome Research 23:530-538

  • Briggs AW, Rios X, Chari R, Yang L, Zhang F, Mali P, ChurchGM (2012). Iterative capped assembly: rapid and scalablesynthesis of repeat-module DNA such as TAL effectors from individual monomers. Nucleic Acids Research 40:e117-e117

  • Bushman F, Lewinski M, Ciuffi A, Barr S, Leipzig J, HannenhalliS, Hoffmann C (2005). Genome-wide analysis of retroviral DNA integration. Nat Rev Micro 3:848-858

  • Cao A, Galanello R (2010). Beta-thalassemia. Genet Med 12:61-Cathomen T, Keith Joung J (2008). Zinc-finger Nucleases: The Next Generation Emerges. Mol Ther 16:1200-1207

  • Cavazzana M (2014). Hematopoietic stem cell gene therapy:progress on the clinical front. Human gene therapy 25:165-170

  • Cavazzana-Calvo M, Payen E, Negre O, Wang G, Hehir K, FusilF, Down J, Denaro M, Brady T, Westerman K (2010).Transfusion independence and HMGA2 activation after gene therapy of human β-thalassaemia. Nature 467:318

  • Cermak T, Doyle EL, Christian M, Wang L, Zhang Y, Schmidt C,Baller JA, Somia NV, Bogdanove AJ, Voytas DF (2011). Efficientdesign and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Research 39:e82-e82

  • Cesana D, Ranzani M, Volpin M, Bartholomae C, Duros C, ArtusA, Merella S, Benedicenti F, Sergi LS, Sanvito F (2014).Uncovering and dissecting the genotoxicity of self-inactivating lentiviral vectors in vivo. Molecular Therapy 22:774-785

  • Chen F, Pruett-Miller SM, Huang Y, Gjoka M, Duda K, TauntonJ, Collingwood TN, Frodin M, Davis GD (2011). High-frequencygenome editing using ssDNA oligonucleotides with zinc-finger nucleases. Nature methods 8:753-755

  • Chira S, Jackson CS, Oprea I, Ozturk F, Pepper MS, Diaconu I,Braicu C, Raduly L-Z, Calin GA, Berindan-Neagoe I (2015).Progresses towards safe and efficient gene therapy vectors. Oncotarget 6:30675

  • Ciccia A, Elledge SJ (2010). The DNA damage response: making it safe to play with knives. Molecular cell 40:179-204

  • Colah R, Gorakshakar A, Nadkarni A (2010). Global burden,distribution and prevention of β-thalassemias and hemoglobin E disorders. Expert review of hematology 3:103-117

  • Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, WuX, Jiang W, Marraffini LA, Zhang F (2013). Multiplex GenomeEngineering Using CRISPR/Cas Systems. Science (New York, NY) 339:819-823

  • Cottle RN, Lee CM, Archer D, Bao G (2015). Controlled deliveryof β-globin-targeting TALENs and CRISPR/Cas9 intomammalian cells for genome editing using microinjection. Scientific reports 5:

  • Cradick TJ, Fine EJ, Antico CJ, Bao G (2013). CRISPR/Cas9systems targeting β-globin and CCR5 genes have substantial off- target activity. Nucleic acids research 41:9584-9592

  • Csobonyeiova M, Polak S, Koller J, Danisovic L (2015). Inducedpluripotent stem cells and their implication for regenerative medicine. Cell and tissue banking 16:171-180

  • DeWitt M, Magis W, Bray NL, Wang T, Berman JR, Urbinati F,Muñoz DP, Kohn DB, Walters MC, Carroll D (2016). Efficientcorrection of the sickle mutation in human hematopoietic stemcells using a Cas9 ribonucleoprotein complex. BioRxiv 036236

  • Dias J, Gumenyuk M, Kang H, Vodyanik M, Yu J, Thomson JA,Slukvin II (2011). Generation of red blood cells from humaninduced pluripotent stem cells. Stem cells and developmentDing Q, Regan SN, Xia Y, Oostrom LA, Cowan CA, Musunuru K(2013). Enhanced efficiency of human pluripotent stem cellgenome editing through replacing TALENs with CRISPRs. Cell stem cell 12:393-394

  • Doulatov S, Notta F, Laurenti E, Dick JE (2012). Hematopoiesis: a human perspective. Cell stem cell 10:120-136

  • Esvelt KM, Mali P, Braff JL, Moosburner M, Yaung SJ, ChurchGM (2013). Orthogonal Cas9 Proteins for RNA-Guided Gene Regulation and Editing. Nature methods 10:1116-1121

  • Finotti A, Gambari R (2014). Recent trends for novel options inexperimental biological therapy of β-thalassemia. Expert opinion on biological therapy 14:1443-1454

  • Flotte TR (2000). Size does matter: overcoming the adeno-associated virus packaging limit. Respiratory Research 1:16-18

  • Frenette PS, Atweh GF (2007). Sickle cell disease: old discoveries,new concepts, and future promise. Journal of Clinical Investigation 117:850-858

  • Fu Y, Foden JA, Khayter C, Maeder ML, Reyon D, Joung JK,Sander JD (2013). High frequency off-target mutagenesisinduced by CRISPR-Cas nucleases in human cells. Nature biotechnology 31:822-826

  • Galanello R, Origa R (2010). Beta-thalassemia. Orphanet Journal of Rare Diseases 5:11

  • Gambari R (2012). Alternative options for DNA-based

  • Gasiunas G, Barrangou R, Horvath P, Siksnys V (2012). Cas9–

  • Genovese P, Schiroli G, Escobar G, Di Tomaso T, Firrito C,Calabria A, Moi D, Mazzieri R, Bonini C, Holmes MC (2014).Targeted genome editing in human repopulating hematopoietic stem cells. Nature 510:235

  • Ghosh S, Thrasher AJ, Gaspar HB (2015). Gene therapy formonogenic disorders of the bone marrow. British journal of haematology 171:155-170

  • Gratz SJ, Cummings AM, Nguyen JN, Hamm DC, Donohue LK,Harrison MM, Wildonger J, O’Connor-Giles KM (2013).Genome Engineering of Drosophila with the CRISPR RNA- Guided Cas9 Nuclease. Genetics 194:1029-1035

  • Hoban MD, Cost GJ, Mendel MC, Romero Z, Kaufman ML,Joglekar AV, Ho M, Lumaquin D, Gray D, Lill GR (2015).Correction of the sickle cell disease mutation in human hematopoietic stem/progenitor cells. Blood 125:2597-2604

  • Hockemeyer D, Soldner F, Beard C, Gao Q, Mitalipova M,DeKelver RC, Katibah GE, Amora R, Boydston EA, Zeitler B(2009). Efficient targeting of expressed and silent genes in humanESCs and iPSCs using zinc-finger nucleases. Nature biotechnology 27:851-857

  • Huang X, Wang Y, Yan W, Smith C, Ye Z, Wang J, Gao Y,Mendelsohn L, Cheng L (2015). Production of gene‐correctedadult beta globin protein in human erythrocytes differentiatedfrom patient iPSCs after genome editing of the sickle point mutation. Stem cells 33:1470-1479

  • Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA,Charpentier E (2012). A Programmable Dual-RNA–GuidedDNA Endonuclease in Adaptive Bacterial Immunity. Science 337:816

  • Katada H, Komiyama M (2011). Artificial restriction DNAcutters to promote homologous recombination in human cells. Current gene therapy 11:38-45

  • Kaufmann KB, Büning H, Galy A, Schambach A, Grez M (2013).Gene therapy on the move. EMBO molecular medicine 5:1642-Kim C (2014). Disease modeling and cell based therapy withiPSC: future therapeutic option with fast and safe application. Blood research 49:7-14

  • Kim S, Kim D, Cho SW, Kim J, Kim J-S (2014). Highly efficientRNA-guided genome editing in human cells via delivery ofpurified Cas9 ribonucleoproteins. Genome research 24:1012-Kim S, Lee MJ, Kim H, Kang M, Kim J-S (2011). Preassembledzinc-finger arrays for rapid construction of ZFNs. Nat Meth 8:7-Kim YG, Cha J, Chandrasegaran S (1996). Hybrid restrictionenzymes: zinc finger fusions to Fok I cleavage domain.Proceedings of the National Academy of Sciences of the United States of America 93:1156-1160

  • King A, Shenoy S (2014). Evidence-based focused review of thestatus of hematopoietic stem cell transplantation as treatment of sickle cell disease and thalassemia. Blood 123:3089-3094

  • Kobari L, Yates F, Oudrhiri N, Francina A, Kiger L, Mazurier C,Rouzbeh S, El-Nemer W, Hebert N, Giarratana M-C (2012).Human induced pluripotent stem cells can reach completeterminal maturation: in vivo and in vitro evidence in theerythropoietic differentiation model. Haematologica 97:1795-Kountouris P, Lederer CW, Fanis P, Feleki X, Old J, KleanthousM (2014). IthaGenes: An Interactive Database for Haemoglobin Variations and Epidemiology. PLOS ONE 9:e103020

  • Liang P, Xu Y, Zhang X, Ding C, Huang R, Zhang Z, Lv J, Xie X,Chen Y, Li Y (2015). CRISPR/Cas9-mediated gene editing in human tripronuclear zygotes. Protein & cell 6:363-372

  • Liang X, Potter J, Kumar S, Zou Y, Quintanilla R, Sridharan M,Carte J, Chen W, Roark N, Ranganathan S (2015). Rapid andhighly efficient mammalian cell engineering via Cas9 protein transfection. Journal of biotechnology 208:44-53

  • Locatelli F, Pagliara D (2012). Allogeneic hematopoietic stem celltransplantation in children with sickle cell disease. Pediatric blood & cancer 59:372-376

  • Lombardo A, Genovese P, Beausejour C, Colleoni S, Lee Y-L,Kim K, Ando D, Urnov F, Galli C, Gregory P (2008). Geneediting in human stem cells using zinc finger nucleases andintegrase-defective lentiviral vector delivery. Blood Cells, Molecules, and Diseases 40:278

  • Ma N, Liao B, Zhang H, Wang L, Shan Y, Xue Y, Huang K, ChenS, Zhou X, Chen Y (2013). Transcription activator-like effectornuclease (TALEN)-mediated gene correction in integration-freeβ-thalassemia induced pluripotent stem cells. Journal of Biological Chemistry 288:34671-34679

  • Mali P, Aach J, Stranges PB, Esvelt KM, Moosburner M, KosuriS, Yang L, Church GM (2013). CAS9 transcriptional activatorsfor target specificity screening and paired nickases forcooperative genome engineering. Nature biotechnology 31:833-Meissner TB, Mandal PK, Ferreira LMR, Rossi DJ, Cowan CA(2014) Chapter Thirteen - Genome Editing for Human GeneTherapy. In: Jennifer AD, Erik JS (eds) Methods in Enzymology. Academic Press, pp 273-295

  • Miccio A, Poletti V, Tiboni F, Rossi C, Antonelli A, Mavilio F,Ferrari G (2011). The GATA1-HS2 enhancer allows persistentand position-independent expression of a β-globin transgene. PLoS One 6:e27955

  • Mojica FJM, Díez-Villaseñor C, García-Martínez J, Almendros C(2009). Short motif sequences determine the targets of theprokaryotic CRISPR defence system. Microbiology 155:733-740

  • Morrison SJ, Uchida N, Weissman IL (1995). The biology ofhematopoietic stem cells. Annual review of cell and developmental biology 11:35-71

  • Naldini L (2011). Ex vivo gene transfer and correction for cell- based therapies. Nature reviews Genetics 12:301

  • Naldini L (2015). Gene therapy returns to centre stage. Nature 526:351

  • Nowrouzi A, Cheung WT, Li T, Zhang X, Arens A, ParuzynskiA, Waddington SN, Osejindu E, Reja S, Von Kalle C (2013). Thefetal mouse is a sensitive genotoxicity model that exposes

  • Oliveri N (1999). The beta-thalassemias. N Engl J Med 341:99-Olivieri NF, Brittenham GM (2013). Management of theThalassemias. Cold Spring Harbor perspectives in medicine 3:a011767

  • Orlando SJ, Santiago Y, DeKelver RC, Freyvert Y, Boydston EA,Moehle EA, Choi VM, Gopalan SM, Lou JF, Li J (2010). Zinc-finger nuclease-driven targeted integration into mammaliangenomes using donors with limited chromosomal homology. Nucleic acids research 38:e152-e152

  • Perez EE, Wang J, Miller JC, Jouvenot Y, Kim KA, Liu O, WangN, Lee G, Bartsevich VV, Lee Y-L, Guschin DY, Rupniewski I,Waite AJ, Carpenito C, Carroll RG, Orange JS, Urnov FD, RebarEJ, Ando D, Gregory PD, Riley JL, Holmes MC, June CH (2008).Establishment of HIV-1 resistance in CD4(+) T cells by genomeediting using zinc-finger nucleases. Nature biotechnologyPiel FB (2016). The Present and Future Global Burden of theInherited Disorders of Hemoglobin. Hematology/Oncology Clinics of North America 30:327-341

  • Poggiali E, Cassinerio E, Zanaboni L, Cappellini MD (2012). An update on iron chelation therapy. Blood Transfusion 10:411

  • Porteus MH (2015). Genome Editing of the Blood: Opportunities and Challenges. Current stem cell reports 1:23-30

  • Puthenveetil G, Scholes J, Carbonell D, Qureshi N, Xia P, Zeng L,Li S, Yu Y, Hiti AL, Yee J-K (2004). Successful correction of thehuman β-thalassemia major phenotype using a lentiviral vector. Blood 104:3445-3453

  • Ramalingam S, Annaluru N, Kandavelou K, Chandrasegaran S(2014). TALEN-mediated generation and genetic correction ofdisease-specific human induced pluripotent stem cells. Current gene therapy 14:461-472

  • Reyon D, Tsai SQ, Khayter C, Foden JA, Sander JD, Joung JK(2012). FLASH Assembly of TALENs Enables High-Throughput Genome Editing. Nature biotechnology 30:460-465

  • Rivella S (2009). Ineffective erythropoiesis and thalassemias. Current opinion in hematology 16:187-194

  • Roselli EA, Mezzadra R, Frittoli MC, Maruggi G, Biral E, MavilioF, Mastropietro F, Amato A, Tonon G, Refaldi C (2010).Correction of β‐thalassemia major by gene transfer inhaematopoietic progenitors of pediatric patients. EMBO molecular medicine 2:315-328

  • Rund D, Rachmilewitz E (2005). β-Thalassemia. New England Journal of Medicine 353:1135-1146

  • S. Makarova K, H. Haft D, Barrangou R, J. J. Brouns S,Charpentier E, Horvath P, Moineau S, J. M. Mojica F, I. Wolf Y,Yakunin AF, van der Oost J, V. Koonin E (2011). Evolution andclassification of the CRISPR-Cas systems. Nature Reviews Microbiology 9:467-477

  • Sebastiano V, Maeder ML, Angstman JF, Haddad B, Khayter C,Yeo DT, Goodwin MJ, Hawkins JS, Ramirez CL, Batista LFZ,Artandi SE, Wernig M, Joung JK (2011). In Situ GeneticCorrection of the Sickle Cell Anemia Mutation in HumanInduced Pluripotent Stem Cells Using Engineered Zinc Finger Nucleases. Stem Cells (Dayton, Ohio) 29:1717-1726

  • Shah SA, Erdmann S, Mojica FJM, Garrett RA (2013).Protospacer recognition motifs: Mixed identities and functional diversity. RNA Biology 10:891-899

  • Shenoy S (2011). Hematopoietic stem cell transplantation forsickle cell disease: current practice and emerging trends. ASH Education Program Book 2011:273-279

  • Skipper KA, Mikkelsen JG (2015). Delivering the goods forgenome engineering and editing. Human gene therapy 26:486-Song B, Fan Y, He W, Zhu D, Niu X, Wang D, Ou Z, Luo M, SunX (2014). Improved hematopoietic differentiation efficiency ofgene-corrected beta-thalassemia induced pluripotent stem cellsby CRISPR/Cas9 system. Stem cells and development 24:1053-Sternberg SH, Redding S, Jinek M, Greene EC, Doudna JA(2014). DNA interrogation by the CRISPR RNA-guided endonuclease Cas9. Nature 507:62-67

  • Stolfi JL, Pai CCS, Murphy WJ (2016). Preclinical modeling ofhematopoietic stem cell transplantation–advantages and limitations. The FEBS journal 283:1595-1606

  • Sun N, Liang J, Abil Z, Zhao H (2012). Optimized TAL effectornucleases (TALENs) for use in treatment of sickle cell disease. Molecular BioSystems 8:1255-1263

  • Sun N, Zhao H (2014). Seamless correction of the sickle celldisease mutation of the HBB gene in human induced pluripotentstem cells using TALENs. Biotechnology and bioengineeringTakahashi K, Yamanaka S (2006). Induction of pluripotent stemcells from mouse embryonic and adult fibroblast cultures by defined factors. cell 126:663-676

  • Thomas ED, Storb R, Clift RA, Fefer A, Johnson FL, Neiman PE,Lerner KG, Glucksberg H, Buckner CD (1975). Bone-marrowtransplantation. New England Journal of Medicine 292:895-902

  • Torikai H, Reik A, Liu P-Q, Zhou Y, Zhang L, Maiti S, Huls H,Miller JC, Kebriaei P, Rabinovitch B, Lee DA, Champlin RE,Bonini C, Naldini L, Rebar EJ, Gregory PD, Holmes MC, CooperLJN (2012). A foundation for universal T-cell basedimmunotherapy: T cells engineered to express a CD19-specificchimeric-antigen-receptor and eliminate expression of endogenous TCR. Blood 119:5697-5705

  • Touzot F, Hacein-Bey-Abina S, Fischer A, Cavazzana M (2014).Gene therapy for inherited immunodeficiency. Expert opinion on biological therapy 14:789-798

  • Townsend JA, Wright DA, Winfrey RJ, Fu F, Maeder ML, JoungJK, Voytas DF (2009). High frequency modification of plantgenes using engineered zinc finger nucleases. Nature 459:442-445Urnov FD, Miller JC, Lee Y-L, Beausejour CM, Rock JM,Augustus S, Jamieson AC, Porteus MH, Gregory PD, HolmesMC (2005). Highly efficient endogenous human gene correction using designed zinc-finger nucleases. Nature 435:646-651

  • Voit RA, Hendel A, Pruett-Miller SM, Porteus MH (2013).Nuclease-mediated gene editing by homologous recombinationof the human globin locus. Nucleic acids research 42:1365-1378

  • Voit RA, McMahon MA, Sawyer SL, Porteus MH (2013).Generation of an HIV Resistant T-cell Line by Targeted“Stacking” of Restriction Factors. Molecular Therapy 21:786-795Wilber A, Hargrove PW, Kim Y-S, Riberdy JM, Sankaran VG,Papanikolaou E, Georgomanoli M, Anagnou NP, Orkin SH,Nienhuis AW (2011). Therapeutic levels of fetal hemoglobin in

  • Wood AJ, Lo T-W, Zeitler B, Pickle CS, Ralston EJ, Lee AH,Amora R, Miller JC, Leung E, Meng X, Zhang L, Rebar EJ,Gregory PD, Urnov FD, Meyer BJ (2011). Targeted GenomeEditing Across Species Using ZFNs and TALENs. Science (New York, NY) 333:307-307

  • Woods N-B, Bottero V, Schmidt M, Von Kalle C, Verma IM(2006). Gene therapy: therapeutic gene causing lymphoma. Nature 440:1123-1123

  • Wright AV, Nuñez JK, Doudna JA (2016). Biology andapplications of CRISPR systems: harnessing nature’s toolbox for genome engineering. Cell 164:29-44

  • Zhang F, Wen Y, Guo X (2014). CRISPR/Cas9 for genomeediting: progress, implications and challenges. Human Molecular Genetics 23:R40-R46

  • Zou J, Mali P, Huang X, Dowey SN, Cheng L (2011). Site-specificgene correction of a point mutation in human iPS cells derivedfrom an adult patient with sickle cell disease. Blood 118:4599-

                                                                                                                                                                                                        
  • Article Statistics