Diagnosis and Treatment of Fanconi Anemia: Special Focus on Nuclease-Mediated Gene Therapy

Author :  

Year-Number: 2021-2
Yayımlanma Tarihi: 2021-12-21 12:42:38.0
Language : English
Konu : Medical Genetics
Number of pages: 31-35
Mendeley EndNote Alıntı Yap

Abstract

Keywords

Abstract

Fanconi anemia is the most frequently reported group of rare hereditary bone marrow failure syndromes. The pathogenesis of the disease includes progressive bone marrow failure, developmental abnormalities, and enhanced predisposition of cancer. The main reason for childhood death in Fanconi anemia patients is bone marrow failure. Unfortunately, most children with Fanconi anemia later develop acute myeloid leukemia or myelodysplastic syndrome. In addition, adult patients are more prone to additional malignancies. To date, 22 different genes have been reported to cause Fanconi anemia. In the treatment of the disease, mainly androgens, and hematopoietic stem cell transplantation (HSCT) applications are included. However, androgen is not a definitive treatment, and its side effects can be severe. Although allogenic HSCT has some side effects, including the high risk of graft-versus-host (GVHD) and difficulty in finding donors, it is used compulsorily since there is no alternative therapy. For these reasons, there is a need for more specific, personalized, and effective solutions for the treatment of Fanconi anemia. Recent advances have been made in gene editing approaches from research for the treatment of single-gene diseases. There are different gene-editing methods available today; yet, the current diagnosis and treatment methods and nuclease-based gene-editing methods of Fanconi anemia will be discussed in this review.

Keywords


  • Anurogo D, Yuli Prasetyo Budi N, Thi Ngo M-H, Huang Y-H,Pawitan JA (2021). Cell and Gene Therapy for Anemia:Hematopoietic Stem Cells and Gene Editing. International Journal of Molecular Sciences 22:6275

  • Asur RS, Kimble DC, Lach FP, Jung M, Donovan FX, Kamat A,Noonan RJ, Thomas JW, Park M, Chines P (2018). Somaticmosaicism of an intragenic FANCB duplication in bothfibroblast and peripheral blood cells observed in a Fanconi genomic medicine 6:77-91

  • Auerbach AD (2009). Fanconi anemia and its diagnosis.Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 668:4-10

  • Auerbach AD (2015). Diagnosis of Fanconi anemia bydiepoxybutane analysis. Current protocols in human genetics 85:8.7. 1-8.7. 17

  • Azik FM, Ileri T, Ince EU, Ertem M, Uysal Z, Gozdasoglu S(2010). Fanconi anemia: 29 years experience in a single center. Skin 40:95.92

  • Bagby G (2018). Recent advances in understanding hematopoiesis in Fanconi Anemia. F1000Research 7:

  • Calado RT, Clé DV (2017). Treatment of inherited bone marrowfailure syndromes beyond transplantation. Hematology 2014, the

  • Castella M, Pujol R, Callén E, Ramírez MJ, Casado JA, TalaveraM, Ferro T, Muñoz A, Sevilla J, Madero L (2011). Chromosomefragility in patients with Fanconi anaemia: diagnosticimplications and clinical impact. Journal of medical genetics 48:242-250

  • Chaudhury S, Auerbach AD, Kernan NA, Small TN, Prockop SE,Scaradavou A, Heller G, Wolden S, O’Reilly RJ, Boulad F (2008).Fludarabine‐based cytoreductive regimen and T‐cell‐depletedgrafts from alternative donors for the treatment of high‐riskpatients with Fanconi anaemia. British journal of haematologyChe R, Zhang J, Nepal M, Han B, Fei P (2018). Multifaceted Fanconi anemia signaling. Trends in Genetics 34:171-183

  • Cheung RS, Taniguchi T (2017). Recent insights into themolecular basis of Fanconi anemia: genes, modifiers, and drivers. International journal of hematology 106:335-344

  • Dever DP, Porteus MH (2017). The changing landscape of geneediting in hematopoietic stem cells: a step towards Cas9 clinical translation. Current opinion in hematology 24:481

  • Deviren A (2018) Fanconi Aplastic Anemia Genetics In: Deviren A (ed) Hemogenetik. Türkiye Klinikleri, pp 47-52

  • Diez B, Genovese P, Roman‐Rodriguez FJ, Alvarez L, Schiroli G,Ugalde L, Rodriguez‐Perales S, Sevilla J, Diaz de Heredia C,Holmes MC (2017). Therapeutic gene editing in CD 34+hematopoietic progenitors from Fanconi anemia patients. EMBO molecular medicine 9:1574-1588

  • Faivre L, Guardiola P, Lewis C, Dokal I, Ebell W, Zatterale A,Altay C, Poole J, Stones D, Kwee ML (2000). Association ofcomplementation group and mutation type with clinicaloutcome in Fanconi anemia. Blood, The Journal of the American Society of Hematology 96:4064-4070

  • Fanconi G (1927). Familiare infantile perniziosaartige Anamie(pernizioses Blutbild und Konstitution). Jahrbuch KinderheilkFeben C, Kromberg J, Wainwright R, Stones D, Poole J, Haw T,Krause A (2015). Hematological consequences of a FANCGfounder mutation in Black South African patients with Fanconi anemia. Blood Cells, Molecules, and Diseases 54:270-274

  • Frohnmayer D, Frohnmayer L, Guinan E, Kennedy T, Larsen K(2014). Fanconi anemia: guidelines for diagnosis and management. Eugene, OR: Fanconi Anemia Res Fund

  • Furquim CP, Pivovar A, Amenábar JM, Bonfim C, Torres-Pereira CC (2018). Oral cancer in Fanconi anemia: Review of 121 cases. Critical reviews in oncology/hematology 125:35-40

  • Hussain W, Mahmood T, Hussain J, Ali N, Shah T, Qayyum S,Khan I (2019). CRISPR/Cas system: a game changing genomeediting technology, to treat human genetic diseases. Gene 685:70-Moreno OM, Paredes AC, Suarez‑Obando F, Rojas A (2021). Anupdate on Fanconi anemia: Clinical, cytogenetic and molecular approaches. Biomedical Reports 15:1-10

  • Nalepa G, Clapp DW (2018). Fanconi anaemia and cancer: an intricate relationship. Nature Reviews Cancer 18:168-185

  • Osborn MJ, Gabriel R, Webber BR, DeFeo AP, McElroy AN,Jarjour J, Starker CG, Wagner JE, Joung JK, Voytas DF (2015).Fanconi anemia gene editing by the CRISPR/Cas9 system. Human gene therapy 26:114-126

  • Osborn MJ, Lonetree C-l, Webber BR, Patel D, Dunmire S,DeFeo AP, McElroy AN, MacMillan ML, Wagner JE, Blazar BR(2016). CRISPR/Cas9 targeted gene editing and cellularengineering in Fanconi anemia. Stem cells and developmentPilonetto D, Pereira N, Bitencourt M, Magdalena N, Vieira E,Veiga L, Cavalli I, Ribeiro R, Pasquini R (2009). FANCD2Western blot as a diagnostic tool for Brazilian patients withFanconi anemia. Brazilian Journal of Medical and Biological Research 42:237-243

  • Pino-Barrio MJ, Giménez Y, Villanueva M, Hildenbeutel M,Sánchez-Dominguez R, Rodríguez-Perales S, Pujol R, Surrallés J,Río P, Cathomen T (2020). TALEN mediated gene editing in a mouse model of Fanconi anemia. Scientific reports 10:1-14

  • Ramanagoudr-Bhojappa R, Carrington B, Ramaswami M, BishopK, Robbins GM, Jones M, Harper U, Frederickson SC, KimbleDC, Sood R (2018). Multiplexed CRISPR/Cas9-mediatedknockout of 19 Fanconi anemia pathway genes in zebrafishrevealed their roles in growth, sexual development and fertility. PLoS genetics 14:e1007821

  • Richardson CD, Kazane KR, Feng SJ, Zelin E, Bray NL, SchäferAJ, Floor SN, Corn JE (2018). CRISPR–Cas9 genome editing inhuman cells occurs via the Fanconi anemia pathway. Nature genetics 50:1132-1139

  • Rio P, Baños R, Lombardo A, Quintana‐Bustamante O, AlvarezL, Garate Z, Genovese P, Almarza E, Valeri A, Díez B (2014).Targeted gene therapy and cell reprogramming in F anconi anemia. EMBO molecular medicine 6:835-848

  • Risitano AM, Marotta S, Calzone R, Grimaldi F, Zatterale A(2016). Twenty years of the Italian Fanconi Anemia Registry:where we stand and what remains to be learned. haematologica 101:319

  • Román-Rodríguez FJ, Ugalde L, Álvarez L, Díez B, Ramírez MJ,Risueño C, Cortón M, Bogliolo M, Bernal S, March F (2019).NHEJ-mediated repair of CRISPR-Cas9-induced DNA breaksefficiently corrects mutations in HSPCs from patients with fanconi anemia. Cell Stem Cell 25:607-621. e607

  • Seyschab H, Friedl R, Sun Y, Schindler D, Hoehn H, Hentze S,Schroeder-Kurth T (1995). Comparative evaluation ofdiepoxybutane sensitivity and cell cycle blockage in the diagnosis of Fanconi anemia.

  • SK (2021). Role of gene therapy in fanconi anemia: A systematic and literature review with future directions.

  • Shimamura A, de Oca RM, Svenson JL, Haining N, Moreau LA,Nathan DG, D'Andrea AD (2002). A novel diagnostic screen fordefects in the Fanconi anemia pathway. Blood, The Journal of the American Society of Hematology 100:4649-4654

  • Skvarova Kramarzova K, Osborn MJ, Webber BR, DeFeo AP,McElroy AN, Kim CJ, Tolar J (2017). CRISPR/Cas9-mediatedcorrection of the FANCD1 gene in primary patient cells. International journal of molecular sciences 18:1269

  • Solanki A, Selvaa CK, Sheth F, Radhakrishnan N, Kalra M,Vundinti BR (2017). Characterization of two novel FANCGmutations in Indian Fanconi anemia patients. Leukemia researchSong L (2009). A possible approach for stem cell gene therapy of Fanconi anemia. Current gene therapy 9:26-32

  • Soulier J (2011). Fanconi anemia. Hematology 2010, theTen Foe JL, Rooimans M, Oostra A, Veerman A, van Weel M,Pauli R, Shahidi N, Dokal I, Roberts I, Altay C (1997). Somaticmosaicism in Fanconi anemia: molecular basis and clinicalsignificance. European Journal of Human Genetics 5:137-148

  • van de Vrugt HJ, Harmsen T, Riepsaame J, Alexantya G, van MilSE, de Vries Y, Ali RB, Huijbers IJ, Dorsman JC, Wolthuis RM(2019). Effective CRISPR/Cas9-mediated correction of a Fanconianemia defect by error-prone end joining or templated repair. Scientific reports 9:1-13

  • Wu Z-H (2013). The concept and practice of Fanconi Anemia:from the clinical bedside to the laboratory bench. Translational pediatrics 2:112

                                                                                                                                                                                                        
  • Article Statistics